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ABSTRACT                                                                                         
The use of large language models (LLMs) in architecture is still at an early stage, but is becoming 

increasingly important due to the need for local, domain-specific assistance systems. This study 

investigates how such models can be developed and extended under local hardware conditions in order 

to provide architecture-specific knowledge in a context-appropriate manner. For this purpose, a 

methodological approach was chosen that combines lightweight fine-tuning with a two-stage retrieval 

augmented generation system (RAG). Two model series were tested: Mini-Spyra for dialogue-oriented 

knowledge retrieval and IwI-Spyra for semantic analysis of structured planning data (e.g. IFC). The 

results show that domain-specific training in combination with dynamic knowledge integration leads 

to significantly more precise, comprehensible answers. The article provides a transferable model for 

the use of AI in teaching and planning practice - data protection-compliant, locally executable and 

didactically comprehensible. The study thus contributes to the development of explainable AI tools in 

an architectural context. This research was conducted within a "Young Researchers" project supported 

by the Jade University of Applied Sciences. 
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1. Introduction 

1.1 Background and Context 

In recent years, technological progress in the field of language models (large language models) has 

led to a large number of new fields of application - particularly in the context of planning, teaching 

and data processing in architecture. While general AI models are already established in areas such as 

text creation, translation and coding, they often lack technical depth, customisable semantics and the 

ability to reliably interpret complex, structured technical content. Especially in architecture, where 

digital planning processes, standards and semantic data formats such as IFC are part of everyday life, 

there are considerable requirements for context sensitivity, understanding of terminology and 

interpretative precision. 

At the same time, many educational institutions and smaller planning offices are faced with the 

challenge of operating AI systems in compliance with data protection regulations, cost-efficiently and 

without cloud dependency. As a result, the focus is shifting to locally executable language models 
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that can be operated on in-house hardware and customised to domain-specific knowledge. The 

potential added value of such systems is obvious: automated standard interpretation, assisted plan 

analysis, semantic knowledge transfer - all embedded in dialogue-oriented systems that are also 

accessible to non-programming users (Hanke, 2024). 

The present work is positioned at the interface between model development, architectural theory and 

digital planning processes. It explores the question of how specialised language models can be built, 

trained and supplemented by retrieval systems in order to not only correctly reproduce subject-

specific knowledge from the field of architecture, but also to make it usable in the planning context - 

for example to support teaching, model checking or design decisions. 

 

1.2 Research Gap and Objectives 

Although there are now numerous studies on the development of generative AI models, there is still 

a lack of systematic approaches to the application of such systems in architecture - particularly in 

combination with semantically structured data formats such as IFC and in environments with limited 

computing power. Most existing systems are cloud-based, generically trained and not very transparent 

in terms of their knowledge sources. This represents a significant obstacle, particularly in the 

university context, where traceability, data protection and didactic clarity are essential. 

A further need for research is how language models can be enriched with project or teaching-specific 

knowledge in a targeted manner without this having to be statically integrated into the model. 

Retrieval Augmented Generation (RAG) offers a promising solution here, but has hardly been 

implemented or documented in the field of architecture to date (Ansre et al., 2025). 

 

This study therefore addresses the following research question: 

‘How can domain-specific language models be developed and extended under local hardware 

conditions to provide architecture-specific knowledge in a context-appropriate way and to 

semantically analyse structured planning data (e.g. IFC)?’ 

 

This results in three central goals: 

 

Development, testing and evaluation of locally executable language models for the architecture-

specific context. 

 

Systematic structuring and integration of subject-specific knowledge modules as a basis for training 

and retrieval. 

 

Extension of the models with a two-stage RAG system for the dynamic integration of external 

content. 

 

1.3 Contribution and Structure of the Paper 

This work contributes to practical AI research in the field of architecture by providing a 

methodological framework for the development, extension and application of subject-specific 

language models. For universities, it offers a realisable model of how AI systems can be used in 

teaching - for example to teach complex technical terms, standards or software processes. For 

planning practice, it enables the development of locally operated assistance systems that can 

specifically access project-specific knowledge and analyse structured building data such as IFC files. 

The study also provides a scalable framework for integrating knowledge components into AI systems 

and uses specific application scenarios to demonstrate the differences between various model versions 

- both in terms of response quality and technical efficiency. The combination of qualitative fine-

tuning, structured knowledge structure and RAG-based extension represents a forward-looking model 

for domain-specific AI applications. 
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The structure of the thesis is as follows: 

Chapter 2 explains the methodological approach and the technical setup, Chapter 3 presents the results 

of the model development and application. Chapter 4 critically discusses the findings in terms of 

usability, limitations and transfer potential. Chapter 5 concludes with an outlook on future 

developments. 

 

2. Materials and Methods 

2.1 Study Design and Setting 

The aim of this study was to develop a language model tailored to the needs of architectural practice 

and teaching that can be executed locally, has low hardware requirements and is also capable of 

providing subject-specific knowledge in a precise and context-sensitive manner. The development 

took place as part of an interdisciplinary research project at the Jade University of Applied Sciences 

and was anchored in the ‘Young Researchers’ programme. In terms of methodology, a practice-

orientated approach was chosen that addresses both technical and semantic-didactic challenges. 

 

The implementation was carried out entirely in a locally containerised environment, built on the 

Ollama platform, which enabled the parallel execution of several model variants with dynamic 

resource allocation. This allowed both experimental and production-related AI applications to be 

tested realistically. 

The methodological process of this study was divided into three overarching phases: 

Model development (green): Selection of a suitable base model, establishment of the technical 

infrastructure, definition of the core knowledge components and subsequent fine-tuning with curated 

data. 

Preparation of the system (blue): Segmentation and semantic embedding of the data, development of 

the two-stage Retrieval Augmented Generation (RAG) system and construction of several specialised 

model variants. 

Evaluation and application (purple): Implementation of concrete application scenarios, e.g. in the area 

of standards analysis or IFC-supported plan review, followed by reflection, evaluation and 

documentation of the results. 

These steps are shown schematically in Figure 1: 
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Figure 1. Methodological workflow of the study. 

 

The knowledge areas identified in the first step formed the semantic foundation for all subsequent 

development phases. In order to anchor the model not only linguistically, but also domain-

specifically, this content had to be recorded, organised and formalised in a structured manner - both 

for training and for subsequent retrieval processes. 

 

2.2 Identification of Core Knowledge Components 

The development of a domain-specific language model presupposes that relevant expertise is 

available not only as a set of texts, but also in a structured form. For this purpose, so-called ‘Core 

Knowledge Components’ (CKC) were defined: central knowledge modules that are required for 

processing typical tasks in the fields of architecture, BIM and digital design. These building blocks 

form the semantic basis for the subsequent training of the language model. 

The Dolphin-2.9.4-Llama3.1 model with eight billion parameters, which is based on the Llama-3 

architecture, served as the technical foundation. It was selected after several test runs and comparison 

with other models of different sizes on the basis of its performance, the basic knowledge available in 

the field of architecture/planning and its trainability on the given hardware. 
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Figure 2. Testing parameters for the base-AI-model. 

 

Initial internal tests showed that the model already had basic knowledge of CAD systems, the 

Rhino/Grasshopper scripting environment and Building Information Modelling (BIM). Structural 

information about so-called ‘Industry Foundation Classes’ (IFC) - an open standard for describing 

building data - could also be identified in simple queries. However, this content in the model was 

incomplete, partially inconsistent and not didactically organised. 

In order to specifically address these gaps, the existing knowledge areas were systematically 

organised and prepared as structured knowledge components. These include object-based 

classifications, functional relationships between components, parametric dependencies in the design 

process and typical data formats such as JSON, which are used in many digital planning processes. 

The aim was to create a semantically dense, technically consistent and linguistically interpretable 

database on which the model could be further trained. 

Didactically motivated content, such as explanatory texts, normative regulations or planning manuals, 

was deliberately not integrated into the model itself. Instead, it was planned to integrate these into the 

response process via a separate RAG system as required. In this way, the model was to remain reactive 

and flexible without being overloaded with static factual knowledge. 

 

2.3 Data collection and preparation 

The creation of the training data followed an iterative process based on a systematic analysis of the 

model's weaknesses. At the beginning, specific test queries were formulated to identify typical 

conceptual, comprehension and application gaps in the basic model. These included questions about 

the meaning of individual IFC classes, the functionality of parametric control logic or the structure 

of digital design structures in Rhino/Grasshopper, as well as general questions about BIM. The results 

of this gap analysis served as the basis for the selection and preparation of suitable training content. 

The data used for the fine-tuning was manually researched and curated from various sources - 

including specialist literature, online tutorials, software documentation and our own research results. 

All content was then converted into dialogue-based question-and-answer formats with the help of 

GPT-4. Particular attention was paid to technical precision, linguistic clarity and consistency of 



                                                                                      Smart Design Policies, 2(1), 122–139/ 2025 

AI-Driven Knowledge Transfer in Architectural Education     127 

content. The final structure followed the JSONL format, which allows easy integration into common 

training pipelines. A typical data set consisted of a human-formulated prompt (Human) and a model-

generated response (Assistant), for example to explain component relationships or design logic. 

 

{"ID": "...", "Human": "...", "Assistant": "..."} 

 

The following example from the training dataset illustrates the type of questions asked and the quality 

of the answers generated: 

 

{"ID": "146", "Human": "What is Grasshopper and how is it used in architecture?", "Assistant": 

"Grasshopper is a graphical algorithm editor tool that is closely integrated with Rhino 3D, a leading 

3D modeling software. It allows users to create complex shapes and structures through visual 

programming without needing to write direct code. In architecture, Grasshopper is used to support 

parametric and generative design, allowing architects and designers to create complex geometric 

forms based on variable parameters. This is often used for creating organic shapes, facade designs, 

and optimizing building structures in relation to environmental factors like sunlight and wind. 

Grasshopper also supports iterative design and facilitates collaboration by enabling easy sharing and 

modification of designs."} 

 

In preparation for integration into the subsequent retrieval system, all data was also divided into 

sections (‘chunks’) of 2000 characters each, with an overlap of 300 characters. This segmentation 

ensured that semantic relationships were not lost and that the content could be efficiently embedded 

in vector spaces. The BAAI/bge-m3 model was used for semantic embedding and the BAAI/bge-

reranker-v2-m3 model for re-ranking the documents in the RAG system - both open source models 

with proven performance in multilingual retrieval tasks. 

 

2.4 Model Development and Integration 

As part of the model development, two central model series were built and tested: Mini-Spyra and 

IwI-Spyra. Both models are based on different initial architectures and were customised for specific 

application scenarios. 

Mini-Spyra was trained in two development cycles. Version 1 (Mini-Spyra-v1) was fine-tuned and 

quantised (Q8_0) on the basis of the curated Q&A data in order to enable model execution on locally 

limited hardware. Due to the low memory profile, the model could be run on a workstation with 96 

GB GPU RAM in up to ten parallel instances. This version was particularly suitable for consulting 

tasks in which complex planning issues with higher context requirements are dealt with. 

Version 2 (Mini-Spyra-v2) had a different focus: the response time of the model was significantly 

improved by specifically adapting the training strategy and reducing the depth of content. This version 

was particularly suitable for UI-based expert systems or simple dialogue queries with low latency. 

The IwI-Spyra model is based on a larger architecture (Qwen/QwQ 32B) and was trained using a 

LoRA adapter (Low-Rank Adaptation). It was specially developed for the semantic analysis and 

structured interpretation of IFC files - i.e. for the automatic evaluation of complex building data. The 

special feature is that IwI-Spyra is able to extract geometric and functional relationships directly from 

the source text of IFC files and categorise them in context. This makes this model particularly suitable 

for dialogue-oriented analysis processes, such as the iterative evaluation of planning documents or 

automated model checking. 

All models were run locally in a virtualised system environment (Docker). The hardware used 

consisted of two NVIDIA A6000 GPUs (96 GB VRAM in total), 256 GB RAM and 2 TB SSD storage 

for storing the knowledge data and embedding indices. The modular architecture made it possible to 

run several models in parallel, dynamically load new versions and test different configurations in 

comparison. 
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2.5 Implementation of Retrieval-Augmented-Generation (RAG) 

A central goal of the development of the Mini-Spyra system was to go beyond static model knowledge 

and dynamically integrate specialised content into the model answers. A Retrieval Augmented 

Generation (RAG) approach was implemented for this purpose. This two-stage process was 

deliberately chosen because it enables a methodologically sound balance between model autonomy 

and content referencing. 

Compared to purely generative architectures, RAG offers the advantage that knowledge content does 

not have to be fully anchored in the model in advance, but can be expanded and retrieved at runtime. 

This reduces the risk of hallucinations and increases technical precision, especially in areas with 

clearly defined terminology such as architecture, BIM or the interpretation of standards. 

Alternative approaches such as classic fine-tuning processes with firmly integrated documents or in-

context learning using prompt engineering were rejected in this use case for several reasons: Fine-

tuning is memory-intensive and makes subsequent updates to the knowledge base more difficult. In-

context learning, on the other hand, reaches the token limits of the models with longer text passages 

or complex standard references and remains limited in the depth of response. 

 

  
Figure 3. What is Retrieval-Augmented Generation? 

 

RAG combines two processes: Firstly, a semantically matching text passage is searched from a locally 

stored knowledge database (‘AUFLADEN Knowledge’) for the user enquiry. This vector search is 

based on a pre-trained embedding model (BAAI/bge-m3), which converts texts into numerical 

representations and thus enables a comparison of content regardless of the specific choice of words. 

The system uses both a semantic and a classic search method (BM25) and selects the most relevant 

text excerpts. 

In a second step, a so-called re-ranking process is applied. The content initially found is compared 

again with the original query in order to assess its actual relevance in context. The BAAI/bge-

reranker-v2-m3 cross-encoder is used for this purpose, which analyses the query and the text section 

together. The model then returns a weighting of the search results so that only the most relevant parts 

of the text are included in the final response of the language model. 

 



                                                                                      Smart Design Policies, 2(1), 122–139/ 2025 

AI-Driven Knowledge Transfer in Architectural Education     129 

  
Figure 4. Setting up the infrastructure. 

 

This system architecture allows content such as standards, didactic explanations, tutorials or specific 

subject definitions to be dynamically integrated into the dialogue process without anchoring them in 

the language model itself. A major advantage is traceability: the text sources used can be output 

transparently by the system, which is particularly valuable in didactic contexts or for examination-

relevant applications. 

The entire architecture can be run locally and has been configured in such a way that both 

performance and flexibility are guaranteed. Thanks to the modular organisation of ‘AUFLADEN’ 

knowledge, new content can be integrated quickly and outdated information can be replaced in a 

targeted manner. The result is a system that not only provides static knowledge, but can also react to 

changes in teaching and practice in a lively manner. 

 

3. Results 

3.1 Application of Domain-Specific Language Models 

The developed language models Mini-Spyra-v1, Mini-Spyra-v2 and IwI-Spyra were tested in real 

application scenarios, which were taken from typical task fields in architecture, BIM modelling and 

plan analysis. The aim was to evaluate the domain-specific suitability, semantic precision and 

application relevance of the models under realistic conditions - especially with regard to specialised 

contexts with a high degree of information density (cf. Hanke et al., 2023; Heins & Grunwald, 2024). 

The test environment followed a structured prompt design based on practical application scenarios. 

The models were used specifically for queries that required semantic understanding, structural 

categorisation and technical accuracy. Mini-Spyra-v1 was tested in document-based knowledge 

contexts and worked on the basis of the ‘AUFLADEN’ database. The model used a two-stage retrieval 

process with RAG architecture (cf. Chen et al., 2024) to provide targeted and contextualised answers. 

For example, it provided a structured explanation to the question about ISO 12006-3: 

 

User:  

bim_glossar.pdf  

Tell me what ISO 12006-3 is about?  

 

Mini-Spyra-v1:  

ISO 12006-3 is about the standard for building information modeling (BIM), which provides methods 

and guidelines for creating comprehensive BIM data from traditional construction plans, sections, 

and elevations. It defines how to create detailed BIM models from these drawings. This ensures 

consistency in terminology and definition across different software platforms. The standard also 
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covers relationships between objects, properties, metadata, and spatial dimensions. It is widely used 

in the building industry for creating precise and accurate BIM data from traditional  

blueprints. 

 

Semantically neighbouring standards such as ISO 23386 were also clearly delineated thematically 

and correctly explained in terms of content: 

 

User:  

bim_glossar.pdf  

and ISO 23386?  

 

Mini-Spyra-0.3.4.3: 

ISO 23386 is focused on the concept of 'Building Information Modeling' (BIM) within the construction 

industry. It provides a conceptual framework to define and organize BIM concepts, including the 

components that make up a building or facility. The standard includes relationships between these 

concepts and defines what constitutes valid BIM data. This ensures consistency in terminology and 

understanding across different software platforms. Overall, ISO 23386 is essential for effective 

communication during construction projects because it provides a common language for discussing 

complex BIM concepts. It is widely used in the construction industry as an integral component of 

comprehensive BIM implementation processes. 

 

Mini-Spyra-v2, an optimised variant with a focus on response speed, was used for the interpretation 

of legal regulations, e.g. §19 of the German Building Code (Baugesetzbuch, 2024). 

 

Building Code *) (BauGB) § 19 Division of plots of land (Federal Ministry of Justice, n.d.) 

 

(1) The division of a plot of land is the declaration made by the owner to the land registry or 

otherwise made recognisable that a part of the plot of land is to be written off in the land register 

and entered as an independent plot of land or as a plot of land together with other plots of land or 

with parts of other plots of land. 

(2) The division of a plot of land within the scope of a development plan may not give rise to any 

circumstances that contradict the provisions of the development plan. 

 

In a specific case study on Section 19 BauGB, the model was able to recognise context, correctly 

interpret the legal source and generate a comprehensible, structured response. This shows the 

potential of AI-supported systems in planning-related advice. 

 

User:  

BauGB  

Collection  

Pls tell me what § 19 Teilung von Grundstücken means?  

 

Mini-Spyra-v2:  

§ 19 Teilung von Grundstücken (Art. 5 Abs. 1 Satz 2, Art. 10 Nr. 8 und Art. 12 Nr. 3, § 16) - This 

section outlines the process for dividing a property into several parts. It includes rules for the creation 

of legal entities to hold specific shares in the divided property and ensures that all parties are 

represented fairly when new ownership structures are established.  

BauGB.pdf 
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The IwI-Spyra model was designed in versions 0.1 and 0.2 for the interpretation of real IFC files. In 

version 0.1, it was already able to recognise structural elements such as walls and windows, classify 

them semantically and relate them to their spatial relationships: 

 

  
Figure 5. Wall with opening - IFC File. 

 

User:  

wall-with-opening-window.ifc  

Please explain to me what can be seen in the file.  

 

Iwl-Spyra-V0.1: (Thought for a minute)  

The file is an IFC model (IFC4) and contains the following main elements:  

Overall project structure: project, building site, building and storey with spatial hierarchy.  

Wall: With material description (layering of one material), geometric representation (3000mm x 

2000mm) and properties such as heat transfer value (0.24 W/(m²K)), external division.  

Window: Inserted in the wall as an opening, with geometric shape (1000 x 200 mm), material 

components (glass, wood) and properties such as flow rate (0.3 m³/s).  

Units of measurement: Length in millimetres, angle in degrees, temperature in °C.  

Spatial relationships: Placement in the coordinate system, aggregation of building parts and spatial 

assignment.  

The model follows the model view definition "ReferenceView_V1.2" and contains geometric 

representation forms for axes (cutting) and bodies (3D extrusion).  

wall-with-opening-and-window.ifc 

 

The enhanced version 0.2 was able to perform precise geometric calculations, such as the volume of 

a wall element based on extrusion data. Material-related information was also correctly extracted 

from the IFC MaterialLayerSet: 
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Figure 6. Wall Element- IFC File. 

 

User:   

EinWandelement.ifc   

This file contains a wall element. Could you please calculate the volume of this element?  

 

Iwl-Spyra-V0.2: (Thought for a minute)   

The volume of the wall element is 13.8 cubic meters.  

It was calculated from: Profile area (Rectangular area): 10 m x 0.46 m = 4.6 m² Extrusion height: 3 

m Volume: 4.6 m² x 3 m = 13.8 m³ The values come from the dimensions of the wall profiles and the 

extrusion length in the IFC data set.  

EinWandelement.ifc  

 

User:   

What is the wall made of?  

 

Iwl-Spyra-V0.2: (Thought for 17 seconds)   

The wall consists of two material layers Brickwork with a thickness of 30 cm Hard thin screed with 

a thickness of 16 cm The layer breakdown is: Brickwork (30 cm) + Hard thin screed (16 cm) = Total 

thickness 46 cm. The material information comes from the defined layer sets (MaterialLayerSet) in 

the IFC data set.  

EinWandelement.ifc 

 

The chosen test strategy makes it possible to identify the strengths and limitations of individual model 

architectures and to further develop them in a targeted and application-specific manner. The 

combination of generative language processing with structured knowledge integration represents a 

methodologically sound alternative to purely generative or retrieval-based systems (cf. Zhou et al., 

2025; Reinemann & Watanabe, 2024). The results show that adaptive fine-tuning and structured 

prompting can also be used to realise powerful, subject-specific assistance systems at a local hardware 

level. 
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3.2 Evaluation of Functional Capabilities 

The analysed results can be assigned to three main functions: 

 

1. contextual knowledge processing 

Mini-Spyra-v1 demonstrated the ability to extract content from extensive collections of knowledge 

in a contextualised manner and convert it into linguistically comprehensible, thematically focused 

responses. This applies to both explicit knowledge (e.g. from standard works) and implicit knowledge 

from heterogeneous text collections. The two-stage RAG system increased response reliability and 

significantly reduced hallucinations. 

 

2. generation of action-related instructions 

Another area of application was the automatic derivation of step-by-step instructions. Mini-Spyra was 

able to generate precise and comprehensible action steps for enquiries about software usage (e.g. 

‘How do I create a new layer in Photoshop?’). The answers contained both functional explanations 

and optional alternatives - a key feature for didactic application scenarios. 

 

3. analysis of structured building data (IFC) 

IwI-Spyra stood out for its ability to analyse IFC files. The model was able to recognise not only 

structural objects (walls, windows), but also their geometric characteristics, material layers and 

semantic relationships. In version 0.2, calculations (e.g. volumes) based on extrusion profiles were 

also possible. Multi-layer material definitions were also correctly identified and named - a step 

towards automated model checking in the BIM process. 

 

3.3 Summary of Key Findings 

The tests and application scenarios carried out show that the chosen methodological approach - 

consisting of locally executed, specialised language models, enriched by a Retrieval Augmented 

Generation (RAG) system - is fundamentally suitable for structuring complex specialist knowledge 

from the field of architecture and digital planning in a machine-readable way, preparing it didactically 

and making it available in a context-appropriate manner. 

 

Compared to general basic models such as Dolphin-Llama3 , Mini-Spyra-v1 in particular showed a 

significant improvement in response quality in architecture-specific contexts. The ability to correctly 

categorise technical terms such as IfcWallStandardCase, MaterialLayerSet or parametric control, to 

explain them in a linguistically coherent manner and to translate them into instructions suitable for 

use represents a clear advance over general models. The central objective - the reduction of semantic 

gaps and technical vagueness - was demonstrably achieved here. 

 

The use of the RAG system also proved to be a powerful addition: the answers from Mini-Spyra-v1 

gained significantly in depth, referenceability and comprehensibility thanks to the structured 

integration of external knowledge sources. This is particularly important in teaching or for 

verification documentation in the planning process, as the source and context of the answer play a 

role in addition to the answer itself. 

 

Mini-Spyra v2, on the other hand, proved to be an efficient tool for reactive systems with low latency 

requirements - for example in graphical user interfaces or as an input amplifier for parameter inputs. 

The reduction of content depth in favour of speed makes this model particularly interesting where 

formal correctness is sufficient but no content discourse is necessary. 

 

Particularly noteworthy is IwI-Spyra-v0.2, which was the first model in the series to be able not only 

to semantically analyse IFC files, but also to correctly extract and linguistically classify complex 

relationships such as component relationships, material hierarchies and geometric dependencies. This 
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step marks a decisive threshold in further development: from purely text-based knowledge generation 

to structured data interpretation. This opens up new possibilities for automated inspection processes, 

dialogue-supported model analyses and intelligent assistance systems in BIM-based workflows. 

 

To summarise, the combination of a fine-tuned language model, structured knowledge component 

development and retrieval integration provides a robust foundation for AI-based tools in architectural 

practice. The results show that these models are not only capable of correctly reproducing technical 

knowledge, but also of interpreting this knowledge within a typical architectural framework - for 

example when dealing with material layering, geometry extraction or normative classifications. The 

next logical step is to scale up this approach for multimodal applications and the further automation 

of planning logics. 

 

4. Discussion and Policy level implication 

The results presented in this thesis show that the development and application of locally executed, 

domain-specific language models in an architecture-specific context is not only technically feasible, 

but also functionally profitable. With regard to the research question formulated at the beginning - 

how domain-specific knowledge can be provided efficiently under hardware constraints and 

structured data formats such as IFC can be analysed - the study provides concrete indications of key 

success factors, system-related limitations and future development directions. 

 

4.1 Findings in relation to the research question 

Firstly, it was shown that even models with a manageable number of parameters (e.g. Mini-Spyra-v1 

with 8B) are capable of providing highly specialised knowledge in a correct, context-related and 

linguistically comprehensible manner - provided that the training data used is precisely structured and 

tailored to the target application. The use of so-called ‘core knowledge components’ proved to be 

methodologically viable: The targeted selection and curation of architecture-specific terms, processes 

and structures laid the semantic foundation for subsequent knowledge processing. 

 

The integration of a retrieval augmented generation system made a decisive contribution to the 

flexibilisation and contextualisation of the model answers. Particularly in the case of normative, 

explanatory or didactically sensitive content, the system was able to correctly allocate relevant 

sources, selectively integrate them and make them usable for the response process. This is an aspect 

that is of central importance in the educational and examination environment. 

 

With IwI-Spyra v0.2, it also became clear that structured, non-natural language data such as IFC files 

can be interpreted semantically using specialised models, including complex geometry analyses, 

material evaluations and component relationships. A central objective of the research question - the 

automatic analysis of structured planning data - was thus successfully realised in a first step. 

 

4.2 Implications for teaching, practice and model development  

The results suggest that domain-specific AI models in architecture can address three areas in 

particular: 

 

Didactic support: comprehensible, understandable and adaptable explanation formats make it easier 

to convey content such as standard terms, software functions or model structures. Mini-Spyra-v1 

offers a powerful basis for providing students with context-sensitive specialist knowledge, for 

example - without cloud constraints or technical barriers. 

 

Planning support and standards-based consulting: Mini-Spyra-v2 shows potential for fast, formally 

correct feedback in UI systems or digital design tools - for example for parameter checks, plausibility 
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analyses or the interpretation of regulations. The combination with RAG enables situational 

contextualisation. 

 

Automated data analysis: Particularly relevant for the future is the further development of models 

such as IwI-Spyra, which can read, interpret and evaluate not only texts but also structured formats 

such as IFC. This opens up prospects for AI-based model checking, dialogue-based BIM analysis and 

automated design support. 

 

At the same time, the separation of model core (language competence) and external knowledge 

(RAG) not only makes sense from a technical point of view, but also allows for better maintainability, 

transparency and updatability - aspects that are of crucial importance in dynamic fields of application 

such as architecture. 

 

4.3 Limitations of the study 

Despite the promising results, the work is not without its limitations. In particular, the following 

points need to be critically considered: 

 

Data depth and breadth: the quality of the models depends heavily on the selection and preparation 

of the training data. Even if great care was taken with the CKCs, the database remains limited - both 

in terms of the variety of topics and multilingual content or special cases of planning practice. 

 

Hardware dependency: Even if all models can be executed locally, the fine-tuning of the models in 

particular, but also the use of models such as IwI-Spyra, requires considerable computing resources. 

This may limit the immediate applicability for smaller offices or educational institutions with limited 

equipment. 

 

Limitations due to the prompt format: The dialogical structure of the training data allows a realistic 

application, but in some cases leads to redundant or linguistically stilted output, even if this is rather 

low - especially with Mini-Spyra v2, which has been optimised for speed. 

 

Generalisability: The concrete use cases tested are based on specific, curated scenarios. 

Generalisation to any planning, design or analysis context is not easily possible and requires further 

scaling and validation. 

 

4.4 Follow-up questions and further development 

The study raises several follow-up questions that should be addressed in future work: 

 

How can multimodal content (e.g. plans, sketches, models) be integrated? 

 

How can a continuous feedback loop be established between user, model and knowledge base? 

 

Which quality metrics are suitable for evaluating AI responses in normative contexts? 

 

How can such systems be integrated into didactic settings - for example as tutors, assistants or 

examination tools? 

 

Another logical step would be to combine text-based analysis capabilities with visual plan 

interpretation, i.e. an expansion towards multimodal AI systems that can process 3D models and plan 

layouts simultaneously, for example. Integration into existing software solutions, such as CAD/BIM 

programmes or learning platforms, would also be conceivable. 
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5. Conclusion 

This study explored the development, extension, and integration of specialised language models into 

practical architectural workflows under local hardware constraints. The central research question 

guiding this investigation was: How can domain-specific language models be developed and extended 

under local hardware conditions in order to provide architecture-specific knowledge in a context-

appropriate manner and semantically analyse structured planning data (e.g. IFC)? The systems 

created—namely Mini-Spyra (versions 1 and 2) and IwI-Spyra—demonstrated that it is both 

technically feasible and contextually advantageous to customise large language models (LLMs) for 

architectural planning and education. By implementing targeted fine-tuning processes, structured 

knowledge modules, and retrieval-augmented generation (RAG) systems, significant improvements 

in semantic precision, technical accuracy, and the overall explainability of the models were achieved. 

The application scenarios, ranging from the interpretation of standards and software documentation 

to the semantic analysis of complex Industry Foundation Classes (IFC) files, further underscored the 

models' ability not only to reproduce information but also to contextualise and articulate it in 

linguistically clear and pedagogically meaningful ways. Notably, IwI-Spyra-v0.2 was capable of 

precisely identifying material layers, geometric elements, and semantic relationships within IFC 

data—a substantial advancement toward automated model checking in architectural practice. 

Moreover, the research established that advanced LLMs can be effectively deployed and enhanced 

under local hardware conditions. Leveraging open-source architectures such as LLaMA 3 and 

Qwen/QwQ, combined with efficient quantisation techniques and RAG strategies, the study 

illustrates the viability of decentralised, data-sovereign AI infrastructures—an especially critical 

consideration in academic and institutional environments. 

 

Scientific contribution and implications 

The study offers a concrete methodological framework for developing, training, and applying 

domain-specific LLMs tailored to the architectural domain. It provides a compelling example of how 

AI-driven tools can be integrated into the digital transformation of architectural education and 

professional planning—serving both as didactic aids and as technical assistance systems. For research 

institutions, the study introduces a replicable model for building specialised AI systems in a 

transparent, modular, and locally operable manner, eliminating reliance on opaque cloud-based 

solutions. In practical terms, this enables AI-supported plan analysis, documentation, and rule-based 

validation while retaining control over both the data and the underlying infrastructure. 

 

Limitations and future work 

Despite the promising outcomes, this research should be regarded as a proof of concept. Several 

components—such as the selection of knowledge sources and the definition of query strategies—still 

rely on manual procedures. Additionally, the experimental scope was limited to selected use cases 

and illustrative queries, without yet incorporating comprehensive external evaluations. Feedback 

from real-world user groups, including students and professional planners, remains an essential next 

step. 

Future research should prioritise several key areas: (1) the scaling and automation of model training 

and data preparation, potentially using active learning or semi-supervised techniques; (2) multimodal 

expansion of the models to accommodate visual and CAD-based inputs; (3) structured user testing to 

refine didactic integration and practical planning support; and (4) enhancing source attribution within 

the AI outputs to ensure transparency and interpretability. Overall, the findings affirm that domain-

specific AI systems are not only technically viable but also practically impactful—provided they are 

developed with well-defined goals, robust knowledge structures, and transparent, locally operated 

architectures. The intersection of domain specialisation, local deployment, and dynamic RAG-based 

augmentation presents a sustainable trajectory for the next generation of AI-supported architectural 

planning tools. 
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